Diabetes
Paragraphs

Abstract:

OBJECTIVE Human blood glucose levels have likely evolved toward their current point of stability over hundreds of thousands of years. The robust population stability of this trait is called canalization. It has been represented by a hyperbolic function of two variables: insulin sensitivity and insulin response. Environmental changes due to global migration may have pushed some human subpopulations to different points of stability. We hypothesized that there may be ethnic differences in the optimal states in the relationship between insulin sensitivity and insulin response.

RESEARCH DESIGN AND METHODS We identified studies that measured the insulin sensitivity index (SI) and acute insulin response to glucose (AIRg) in three major ethnic groups: Africans, Caucasians, and East Asians. We identified 74 study cohorts comprising 3,813 individuals (19 African cohorts, 31 Caucasian, and 24 East Asian). We calculated the hyperbolic relationship using the mean values of SI and AIRg in the healthy cohorts with normal glucose tolerance.

RESULTS We found that Caucasian subpopulations were located around the middle point of the hyperbola, while African and East Asian subpopulations are located around unstable extreme points, where a small change in one variable is associated with a large nonlinear change in the other variable.

CONCLUSIONS Our findings suggest that the genetic background of Africans and East Asians makes them more and differentially susceptible to diabetes than Caucasians. This ethnic stratification could be implicated in the different natural courses of diabetes onset.

Canalization is the way in which organisms develop phenotypic robustness as a response to genetic or environmental perturbations. This process ensures the stability of critical biological processes like blood glucose regulation. Canalization of this trait can be represented by a hyperbolic function of two underlying variables: insulin sensitivity and insulin response, as primarily described by Kahn et al. (1,2).

Global migration in the early history of Homo sapiens placed people in new environments, resulting in novel diets, food scarcity, different climates, and exposure to novel pathogens. These changes may have shifted population averages of factors that influence insulin sensitivity and secretion. They include body size, body composition, energy expenditure, storage, and heat production. As these factors changed, they may have disclosed cryptic genetic variation or adopted novel mutations, leading to disruption of the unique point of stable equilibrium of ancestral populations. As this process continued over hundreds of millennia, specific genetic and environmental perturbations may have pushed some subpopulations to different points of stability (1,35).

We hypothesized that there may be ethnic differences in the optimal states in the relationship between insulin sensitivity and insulin response and that these differences may depend on a population’s genetic or evolutionary history. To assess this hypothesis, we performed a systematic review and a meta-analysis of studies of the insulin sensitivity index (SI) and the acute insulin response to glucose (AIRg). Our analysis was done in cohorts in any of the three major ethnic groups: Africans, Caucasians, and East Asians. We found significant differences between the groups.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Diabetes Care
Authors
Keiichi Kodoma
Damon Tojjar
Satoru Yamada
Kyoko Toda
Chirag J. Patel
Atul J.Butte
Paragraphs

Abstract:

Several common genetic variations have been associated with type 2 diabetes, but the exact disease mechanisms are still poorly elucidated. Using congenic strains from the diabetic Goto-Kakizaki rat, we identified a 1.4-megabase genomic locus that was linked to impaired insulin granule docking at the plasma membrane and reduced β cell exocytosis. In this locus, Adra2a, encoding the alpha2A-adrenergic receptor [alpha(2A)AR], was significantly overexpressed. Alpha(2A)AR mediates adrenergic suppression of insulin secretion. Pharmacological receptor antagonism, silencing of receptor expression, or blockade of downstream effectors rescued insulin secretion in congenic islets. Furthermore, we identified a single-nucleotide polymorphism in the human ADRA2A gene for which risk allele carriers exhibited overexpression of alpha(2A)AR, reduced insulin secretion, and increased type 2 diabetes risk. Human pancreatic islets from risk allele carriers exhibited reduced granule docking and secreted less insulin in response to glucose; both effects were counteracted by pharmacological alpha(2A)AR antagonists.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Science Magazine
Authors
Anders H. Rosengren
Ramunas Jokubka
Damon Tojjar
Charlotte Granhall
Ola Hansson
Dai-Qing Li
Vini Nagaraj
Thomas M. Reinbothe
Jonatan Tuncel
Lena Eliasson
Leif Groop
Patrik Rorsman
Albert Salehi
Valeriya Lyssenko
Holger Luthman
Erik Renström
Paragraphs

Abstract:

Aims/hypothesis

Glucose-stimulated insulin secretion is dependent on the electrical activity of beta cells; hence, genes encoding beta cell ion channels are potential candidate genes for type 2 diabetes. The gene encoding the voltage-dependent Ca2+ channel CaV2.3 (CACNA1E), telomeric to a region that has shown suggestive linkage to type 2 diabetes (1q21-q25), has been ascribed a role for second-phase insulin secretion.

Methods

Based upon the genotyping of 52 haplotype tagging single nucleotide polymorphisms (SNPs) in a type 2 diabetes case–control sample (n  = 1,467), we selected five SNPs that were nominally associated with type 2 diabetes and genotyped them in the following groups (1) a new case–control sample of 6,570 individuals from Sweden; (2) 2,293 individuals from the Botnia prospective cohort; and (3) 935 individuals with insulin secretion data from an IVGTT.

Results

The rs679931 TT genotype was associated with (1) an increased risk of type 2 diabetes in the Botnia case–control sample [odds ratio (OR) 1.4, 95% CI 1.0–2.0, p = 0.06] and in the replication sample (OR 1.2, 95% CI 1.0–1.5, p = 0.01 one-tailed), with a combined OR of 1.3 (95% CI 1.1–1.5, p = 0.004 two-tailed); (2) reduced insulin secretion [insulinogenic index at 30 min p = 0.02, disposition index (D I) p = 0.03] in control participants during an OGTT; (3) reduced second-phase insulin secretion at 30 min (p = 0.04) and 60 min (p = 0.02) during an IVGTT; and (4) reduced D I over time in the Botnia prospective cohort (p = 0.05).

Conclusions/interpretation

We conclude that genetic variation in the CACNA1E gene contributes to an increased risk of the development of type 2 diabetes by reducing insulin secretion.

 
All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Diabetologia
Authors
J. Holmkvist
Damon Tojjar
P. Almgren
V. Lyssenko
CM Lindgren
B. Isomaa
T. Tuomi
G. Berglund
E. Renström
L. Groop
Subscribe to Diabetes